

# **NAMIBIA UNIVERSITY**

## OF SCIENCE AND TECHNOLOGY

## FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

#### **DEPARTMENT OF NATURAL AND APPLIED SCIENCES**

| QUALIFICATION: BACHELOR OF SCIENCE |                                              |
|------------------------------------|----------------------------------------------|
| QUALIFICATION CODE: 07BOSC         | LEVEL: 7                                     |
| COURSE CODE: MMP701S               | COURSE NAME: MATHEMATICAL METHODS IN PHYSICS |
| SESSION: JULY 2022                 | PAPER: THEORY                                |
| DURATION: 3 HOURS                  | MARKS: 100                                   |

| SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER |                   |  |  |  |
|-------------------------------------------------------------|-------------------|--|--|--|
| EXAMINER(S)                                                 | Prof Dipti R Sahu |  |  |  |
| MODERATOR:                                                  | Prof. S. C. Ray   |  |  |  |

|    | INSTRUCTIONS                |  |
|----|-----------------------------|--|
| 1. | Answer ALL the questions.   |  |
| 2. | Write clearly and neatly.   |  |
| 3. | Number the answers clearly. |  |

#### PERMISSIBLE MATERIALS

Non-programmable Calculators

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

### Question 1 [25]

- 1.1 Newton's law of cooling states that the rate of cooling of a body is directly proportional to the temperature difference between the body and the surroundings
  - 1.1.1 Formulate the differential equation and determine the temperature of the body at any time, t. (10)
  - 1.1.2 A body at a temperature of 80°C cools to 60°C in 30min in a room temperature environment of 30oC. Find the temperature of the body after 16 min. (5)
- 1.2 Solve the equation

$$x \frac{dy}{dx} + y(x+1) = 9x; y(1) = 15$$
 (5)

Solve the initial value problem ty' + 3y = 0, y(1) = 2, assuming t > 0 (5)

Question 2 [25]

- 2.1 A series circuit consists of a resistor with R = 40  $\Omega$ , an inductor with L= 1 H, a capacitor with C = 16 x 10<sup>-4</sup> F are connected with E(t) =100 cos10t. The circuit initial charge and current are both zero.
  - 2.1.1 Find the charge and current at time (t) in the circuit using the differential equation of the above circuit (15)
  - 2.1.2 Write down the steady state solution of the equation. (5)
- 2.2 Solve  $y'' + 4y = e^{3x}$  (10)

3.1

If  $A = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$  and  $B = \begin{bmatrix} 1 & -1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix}$ , find AB

- 3.2 Solve the system of equations using Gauss-Jordan elimination method (10) 2x-3y = -21 3x-2y = 1 8x-5y = -49
- 3.3 Find the eigenvalues and eigenvectors of the 3 × 3 matrix (10)

$$A = \left[ \begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right]$$

Question 4

[25]

(5)

4.1 Find the first three Laguerre polynomials from the Rodrigues formula

$$L_n(x) = \frac{1}{n!} e^x \frac{d^n}{dx^n} (x^n e^{-x})$$

4.2 Determine the inner product of the following functions in [0, 1] (10)

(a) 
$$f(x) = 8x$$
,

(b) 
$$g(x) = x^2 - 1$$
.

(c) Also find ||f|| and ||g||.

4.3 Given the independent set of vectors:  $V_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ ;  $V_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ ;  $V_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$  and (10)

the corresponding orthonormal set

$$e_{1} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}; \quad e_{2} = \frac{1}{2\sqrt{3}} \begin{pmatrix} -3 \\ 1 \\ 1 \\ 1 \end{pmatrix}; \quad e_{3} = \frac{\sqrt{3}}{3\sqrt{2}} \begin{pmatrix} 0 \\ -2 \\ 1 \\ 1 \end{pmatrix}$$

express the vector

$$B = \begin{pmatrix} 3 \\ 3 \\ 1 \\ -5 \end{pmatrix}$$
 as a superposition of (i) V (ii) and e

.....END.....